Generalised primal-dual grids for unstructured co-volume schemes
نویسنده
چکیده
The generation of high-quality staggered unstructured grids for computational simulation is considered; leading to the development of a new optimisation-based strategy for the construction of weighted ‘RegularPower’ tessellations appropriate for co-volume type numerical techniques. This new framework aims to extend the conventional Delaunay-Voronoi primal-dual structure; seeking to assemble generalised orthogonal tessellations with enhanced geometric quality. The construction of these grids is motivated by the desire to improve the performance and accuracy of numerical methods based on unstructured co-volume type schemes, including various staggered grid techniques for the simulation of fluid dynamics and hyperbolic transport. In this study, a hybrid optimisation strategy is proposed; seeking to optimise the geometry, topology and weights associated with general, two-dimensional Regular-Power tessellations using a combination of gradient-ascent and energy-based techniques. The performance of the new method is tested experimentally, with a range of complex, multi-resolution primal-dual grids generated for various coastal and regional ocean modelling applications.
منابع مشابه
A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملSmooth Delaunay-Voronoï Dual Meshes for Co-Volume Integration Schemes
Yee’s scheme for the solution of the Maxwell equations [1] and the MAC algorithm for the solution of the Navier–Stokes equations [2] are examples of co-volume solution techniques. Co-volume methods, which are staggered in both time and space, exhibit a high degree of computationally efficiency, in terms of both CPU and memory requirements compared to, for example, a finite element time domain m...
متن کاملThree-Dimensional Adaptive Central Schemes on Unstructured Staggered Grids
We present a new formulation of three-dimensional central finite volume methods on unstructured staggered grids for solving systems of hyperbolic equations. Based on the Lax-Friedrichs and Nessyahu-Tadmor one-dimensional central finite difference schemes, the numerical methods we propose involve a staggered grids in order to avoid solving Riemann problems at cell interfaces. The cells are baryc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.02657 شماره
صفحات -
تاریخ انتشار 2017